Cram University
 
Username: Password:

Sign up (it's free!)   | |   forgot password?

 

Calc 2 8.1

 

<== Calculus 2
Number Question Answer
See the work

1.

 

 

For each sequence, find a formula for the general
term, an. Sequences start with n = 1.
a. 1/2, 1/4, 1/8, 1/16,........
b. 3/16, 4/25, 5/36, 6/49,.......

 

a. 1/(2^n)
b. (n+2)/((n+3)^2)
The work

Point Cost: 1

2.

 

 

Determine whether the sequence an=(9n+13)/(2n+15)
converges or diverges. If it converges, find the limit.
Converges:
Limit:

 

Converges: Y

Limit: 4.5

 

The work

Point Cost: 1

3.

 

 

Determine whether the sequence is divergent
or convergent. If it is convergent, evaluate its limit.

2^n/3^(n+1)

0
The work

Point Cost: 1

4.

 

 

 

Determine whether the sequence an=(6(n)^(1/8)+9)/(17(n)^(1/8)+5 converges
or diverges. If it converges, find the limit.

Converges:

Limit:

 

Converges: Y
Limit: 0.35294118
The work

Point Cost: 1

5.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

Divergent
The work

Point Cost: 1

6.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

Diverges to ∞
The work

Point Cost: 1

7.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

Divergent 
The work

Point Cost: 1

8.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

1
The work

Point Cost: 1

9.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

lim as n-->inf n^(2)*e^(-6n)

 

0
The work

Point Cost: 1

10.

 

 

 

Determine whether the sequence an=arctan(8n^2) 
convergesor diverges. If it converges, find the limit.

Converges:

Limit:

 

Convergent: Y

Limit: 1.57079633

The work

Point Cost: 2

11.

 

 

Find the limit of the sequence

 

0
The work

Point Cost: 1

12.

 

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

 

0
The work

Point Cost: 1

13.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

0
The work

Point Cost: 1

14.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

The work

Point Cost: 0

15.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

lim as n--> inf ((2n!)/(-8)^n

 

-4
The work

Point Cost: 2

16.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

lim as n--> inf (2n!)/(-8)^n

 

Divergent
The work

Point Cost: 1

17.

 

 

 

Determine whether the sequence is divergent 
or convergent. If it is convergent, evaluate its limit.

 

0
The work

Point Cost: 1

18.

 

 

 

 

 

 

 

 

 

Match each sequence below to statement that best fits


Z. The sequence converges to zero
I. The sequence diverges to infinity
F. The sequence has a finite non-zero limit
D. The sequence diverges.

1. Z

2. F

3. Z

4. I

5. Z

6. I 

7. F

8. D

The work